Prognostic Modelling of Biomethane Production from Waste: Application of Extreme Gradient Boosting
How to cite (IJASEIT) :
The escalating fossil fuel prices and greenhouse gases need urgent attention for a sustainable solution. The present study explores as modern machine learning approaches can be employed to prognosticate the complex biomethane generation process from organic wastes, like biowaste or food waste. The research investigates the use of organic sludges and how intelligent approaches can be employed to comprehend the complex nonlinear processes involved in biomethane production. Linear regression and Extreme gradient boosting (XGBoost) based prediction-models were developed and assessed employing a diverse set of statistical parameters, including R, R2, Mean Squared Error (MSE), Mean Absolute Error (MAE), and Kling-Gupta Efficiency (KGE). The results show that the XGBoost model beat the classical Linear Regression (LR) model in both the training and testing phases. During training, the XGBoost had an impressive R2 value of 0.99994, indicating a perfect fit to the data. In contrast, LR achieved an R2 value of 0.65464. Similarly, during the test period, XGBoost outperformed LR with R2 values of 0.9553 to 0.9902. Furthermore, XGBoost reduced prediction errors, with significantly lower MSE and MAE values than LR. Taylor’s graph better illustrates the excellent performance of the XGBoost over LR in both training and testing. These data demonstrate the ability of XGBoost to predict biomethane production, as well as its ability to improve the biomethane production process.
J. A. Siles, I. García-García, A. Martín, and M. A. Martín, “Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing,” J Hazard Mater, vol. 188, no. 1–3, pp. 247–253, Apr. 2011, doi:10.1016/J.JHAZMAT.2011.01.096.
V. R. Moreira, T. G. Carpanez, N. C. Magalhães, Y. F. X. Ladeira, L. C. Lange, and M. C. S. Amaral, “Ultrafiltration as a pre-treatment technology to improve vinasse biomethanation,” Process Safety and Environmental Protection, vol. 169, pp. 718–724, Jan. 2023, doi:10.1016/J.PSEP.2022.11.061.
V. G. Nguyen, M. H. Tran, P. Paramasivam, H. C. Le, and D. T. Nguyen, “Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution,” Int J Adv Sci Eng Inf Technol, vol. 14, no. 1, pp. 268–286, Feb. 2024, doi: 10.18517/ijaseit.14.1.17489.
T. T. Le et al., “An Experimental Assessment of Waste Transformer Oil and Palm Oil Biodiesel Blended with Diesel Fuel on A Single Cylinder Direct in Diesel Engine,” Int J Adv Sci Eng Inf Technol, vol. 14, no. 1, pp. 246–258, Feb. 2024, doi: 10.18517/ijaseit.14.1.15998.
K. Ravi, S. Mathew, J. Pradeep Bhasker, and E. Porpatham, “Gaseous alternative fuels for CI engines - a technical review,” International Journal of Pharmacy and Technology, vol. 8, no. 4, pp. 5257–5268, 2016.
B. B. Sahoo, N. Sahoo, and U. K. Saha, “Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6–7, pp. 1151–1184, Aug. 2009, doi:10.1016/J.RSER.2008.08.003.
V. S. Yaliwal, N. R. Banapurmath, N. M. Gireesh, and P. G. Tewari, “Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature,” Renewable and Sustainable Energy Reviews, vol. 34, no. June, pp. 608–627, 2014, doi: 10.1016/j.rser.2014.03.043.
M. Prussi, M. Padella, M. Conton, E. D. Postma, and L. Lonza, “Review of technologies for biomethane production and assessment of Eu transport share in 2030,” J Clean Prod, vol. 222, 2019, doi:10.1016/j.jclepro.2019.02.271.
O. A. Aworanti et al., “Enhancing and upgrading biogas and biomethane production in anaerobic digestion: a comprehensive review,” Frontiers in Energy Research, vol. 11. 2023. doi:10.3389/fenrg.2023.1170133.
A. Mandpe et al., “Exploring the synergic effect of fly ash and garbage enzymes on biotransformation of organic wastes in in-vessel composting system,” Bioresour Technol, vol. 322, no. October 2020, p. 124557, 2021, doi: 10.1016/j.biortech.2020.124557.
A. Le Pera, M. Sellaro, E. Bencivenni, and F. D’Amico, “Environmental sustainability of an integrate anaerobic digestion-composting treatment of food waste: Analysis of an Italian plant in the circular bioeconomy strategy,” Waste Management, vol. 139, pp. 341–351, Feb. 2022, doi: 10.1016/j.wasman.2021.12.042.
M. Alruqi and P. Sharma, “Biomethane Production from the Mixture of Sugarcane Vinasse, Solid Waste and Spent Tea Waste: A Bayesian Approach for Hyperparameter Optimization for Gaussian Process Regression,” Fermentation, vol. 9, no. 2, p. 120, Jan. 2023, doi:10.3390/fermentation9020120.
T. B. N. Nguyen and N. V. L. Le, “Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review,” Journal of Emerging Science and Engineering, vol. 1, no. 1, pp. 6–13, Sep. 2023, doi: 10.61435/jese.2023.2.
V. H. Dong and P. Sharma, “Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments,” Journal of Emerging Science and Engineering, vol. 1, no. 1, pp. 22–28, Sep. 2023, doi: 10.61435/jese.2023.4.
M. J. Diaz, E. Madejón, F. López, R. López, and F. Cabrera, “Optimization of the rate vinasse/grape marc for co-composting process,” Process Biochemistry, vol. 37, no. 10, pp. 1143–1150, May 2002, doi: 10.1016/S0032-9592(01)00327-2.
S. Mahapatra, Md. H. Ali, and K. Samal, “Assessment of compost maturity-stability indices and recent development of composting bin,” Energy Nexus, vol. 6, p. 100062, Jun. 2022, doi:10.1016/J.NEXUS.2022.100062.
V. Robles-González, J. Galíndez-Mayer, N. Rinderknecht-Seijas, and H. M. Poggi-Varaldo, “Treatment of mezcal vinasses: A review,” J Biotechnol, vol. 157, no. 4, pp. 524–546, Feb. 2012, doi:10.1016/j.jbiotec.2011.09.006.
C. A. Christofoletti, J. P. Escher, J. E. Correia, J. F. U. Marinho, and C. S. Fontanetti, “Sugarcane vinasse: Environmental implications of its use,” Waste Management, vol. 33, no. 12, pp. 2752–2761, Dec. 2013, doi: 10.1016/j.wasman.2013.09.005.
L. F. Ferreira, M. Aguiar, G. Pompeu, T. G. Messias, and R. R. Monteiro, “Selection of vinasse degrading microorganisms,” World J Microbiol Biotechnol, vol. 26, no. 9, pp. 1613–1621, Sep. 2010, doi:10.1007/s11274-010-0337-3.
A. Djalma Nunes Ferraz Júnior, M. H. Koyama, M. M. de Araújo Júnior, and M. Zaiat, “Thermophilic anaerobic digestion of raw sugarcane vinasse,” Renew Energy, vol. 89, pp. 245–252, Apr. 2016, doi: 10.1016/j.renene.2015.11.064.
A. Cabello, T. Mendiara, M. Teresa Izquierdo, F. García-Labiano, and A. Abad, “Energy use of biogas through chemical looping technologies with low-cost oxygen carriers,” Fuel, vol. 344, 2023, doi: 10.1016/j.fuel.2023.128123.
S. Isarapakdeetham et al., “Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3,” Int J Hydrogen Energy, vol. 45, no. 3, pp. 1477–1491, Jan. 2020, doi:10.1016/j.ijhydene.2019.11.077.
D. Hu et al., “Insight into the biomass pyrolysis volatiles reaction with an iron-based oxygen carrier in a two-stage fixed-bed reactor,” Chemical Engineering Journal, vol. 465, 2023, doi:10.1016/j.cej.2023.142860.
Y. Qiu, J. Zhou, M. Khandelwal, H. Yang, P. Yang, and C. Li, “Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration,” Eng Comput, vol. 38, no. S5, pp. 4145–4162, Dec. 2022, doi:10.1007/s00366-021-01393-9.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016, pp. 785–794. doi:10.1145/2939672.2939785.
O. Sagi and L. Rokach, “Approximating XGBoost with an interpretable decision tree,” Inf Sci (N Y), vol. 572, pp. 522–542, Sep. 2021, doi: 10.1016/J.INS.2021.05.055.
P. Zhang, Y. Jia, and Y. Shang, “Research and application of XGBoost in imbalanced data,” Int J Distrib Sens Netw, vol. 18, no. 6, 2022, doi: 10.1177/15501329221106935.
X. Cui, D. Shi, Z. Chen, and F. Xu, “Parallel Forestry Text Classification Technology Based on XGBoost in Spark Framework,” Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, vol. 50, no. 6, 2019, doi:10.6041/j.issn.1000-1298.2019.06.032.
S. Pan, Z. Zheng, Z. Guo, and H. Luo, “An optimized XGBoost method for predicting reservoir porosity using petrophysical logs,” J Pet Sci Eng, vol. 208, 2022, doi: 10.1016/j.petrol.2021.109520.
S. Ben Jabeur, S. Mefteh-Wali, and J. L. Viviani, “Forecasting gold price with the XGBoost algorithm and SHAP interaction values,” Ann Oper Res, 2021, doi: 10.1007/s10479-021-04187-w.