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Abstract— The escalating fossil fuel prices and greenhouse gases need urgent attention for a sustainable solution. The present study 

explores as modern machine learning approaches can be employed to prognosticate the complex biomethane generation process from 

organic wastes, like biowaste or food waste. The research investigates the use of organic sludges and how intelligent approaches can 

be employed to comprehend the complex nonlinear processes involved in biomethane production. Linear regression and Extreme 

gradient boosting (XGBoost) based prediction-models were developed and assessed employing a diverse set of statistical parameters, 

including R, R2, Mean Squared Error (MSE), Mean Absolute Error (MAE), and Kling-Gupta Efficiency (KGE). The results show 

that the XGBoost model beat the classical Linear Regression (LR) model in both the training and testing phases. During training, the 

XGBoost had an impressive R2 value of 0.99994, indicating a perfect fit to the data. In contrast, LR achieved an R2 value of 0.65464. 

Similarly, during the test period, XGBoost outperformed LR with R2 values of 0.9553 to 0.9902. Furthermore, XGBoost reduced 

prediction errors, with significantly lower MSE and MAE values than LR. Taylor’s graph better illustrates the excellent performance 

of the XGBoost over LR in both training and testing. These data demonstrate the ability of XGBoost to predict biomethane 

production, as well as its ability to improve the biomethane production process. 
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I. INTRODUCTION

The technology known as Waste-to-Energy (WtE) 

provides a sustainable solution to the combined concerns of 

energy generation and waste management. It makes use of 

efficient waste management; by converting waste into 

energy or fuel. In this way there is less dependence on 
landfills, which in turn helps the environment deal with 

lower levels of pollution and greenhouse gases [1], [2]. 

Thermal processes such as incineration, flaring, and 

gasification are employed to convert organic waste into 

useful energy. This process contributes to the circular 

economy by recovering materials from waste streams. At the 

same time, WtE technologies will address the urgent need 

for effective waste management solutions, playing an 

important role in the transition to a sustainable energy 

environment. It does this by providing renewable energy and 

at the same time meeting the demand for waste management 
solutions [3], [4]. 

Additionally, waste energy provides renewable energy 

that can be used for a variety of purposes. The thermal 

energy generated from WtE plants can be used for district 

heating, industrial applications, or to generate electricity 

through steam or gas turbines. In addition, biogas produced 

from anaerobic digestion can be converted into biomethane, 

a renewable natural gas with properties similar to 

conventional natural gas, which is suitable for injection into 

natural gas pipelines, fuel transportation, or heating energy. 

Biomethane has emerged as a versatile sustainable energy 

source with many applications in various industries. As a 

renewable alternative to fossil fuels, biomethane can help 
reduce greenhouse gas emissions and combat climate change. 

Used in transport as compressed natural gas (CNG) or 

liquefied natural gas (LNG), it can significantly reduce 

vehicle emissions, especially for heavy transport such as in 

buses, trucks and ships [5], [6], [7]. 

Additionally, biomethane can be used to generate energy 

installed in districts off-grid or in remote locations, 

providing clean and reliable energy for communities without 

grid access use of ritual provides opportunities. In 

agriculture, biomethane derived from organic waste, such as 

crop residues and animal manure, offers the possibility of 
environmentally friendly waste management, as well as 
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additional income for farmers through energy-renewable 

sales. But despite the obvious advantages, several barriers 

must be overcome before waste-energy biomethane 

technology is widely adopted technical barriers, such as 

efficiency and scalability, associated economic 

considerations investment and energy pricing, regulatory 

framework for waste management and renewable energy. 

Public acceptance and perception, are some of the factors 

contributing to these challenges [8], [9]. 

Composting constitutes a biological conversion procedure 
that incorporates a number of different types of 

microorganisms. These microorganisms break down trash 

that is derived from organic waste material and transform it 

into compost. Handling organic solid waste in a manner that 

is kind to the environment may be accomplished via the 

process of composting. A considerable market for compost 

may be found in agricultural regions as well as emitted 

zones. Maturity and stability of the compost are essential for 

the use that is intended for it. In addition, it takes less time 

than traditional composting methods. By using a wide range 

of chemicals and earthworms, this method has the potential 
to enhance both the efficiency of the process and the quality 

of the compost [10], [11].  

Certain organic materials can only be handled via the 

process of co-composting, despite the fact that practically all 

organic wastes are capable of being composted due to the 

physicochemical properties they possess. The process of co-

composting encompasses a multitude of advantages, such as 

the modification of the initial moisture content and the ratio 

of carbon to nitrogen, the enhancement of the effectiveness 

of the process, and the improvement of the quality of the 

compost. The co-composting of different biogenic materials 
together has been the subject of study in recent years [12], 

[13], [14]. This is because of many reasons. 

There has been a significant amount of research 

conducted on the co-composting of a variety of organic 

wastes; however, there has not been a significant amount of 

research conducted on the co-composting of tea residues or 

food wastes. Leftover of the pulp and paper manufacturing 

process is rich in carbon and is also referred to as 

lignocellulosic biomass under another name. It is generally 

agreed that TW co-composting is an environmentally 

friendly method of recycling garbage that is widely used. 

Either as a soil amendment or a fertilizer, the finished 
product has the potential to be used. For this reason, it is 

essential to investigate a variety of composting techniques 

for the purpose of recycling tea waste [15], [16].  

Vinasse is generally considered to be the most important 

waste leftover of the ethanol production industry. It is 

largely produced during the distillation stage of the process. 

Vinasse can be both caustic and alkaline because of its high 

pH, large quantities of sulfate and potassium, as well as 

considerable organic content. Vinasse also has a high pH. It is 

the latter that takes place as a consequence of actions that are 

associated with the handling of substrate for fermentation, 
such as the incorporation of sulfuric acid in order to regulate 

pH and avoid yeast flocculation [15], [17], [18]. There are 

three distinct varieties of sugarcane vinasse that may be 

produced as a consequence of the industrial process. These 

varieties are determined by whether the fermentable sugars 

that were utilized to produce ethanol originated from juice, 

molasses, or a mix of the two [19], [20].  

Two indicators of this are the rate at which vinasse is 

created and the variations in the COD of the degradable 

biological ingredient that is present in vinasse. Both of these 

factors are indicators of progress. The fermentation process 

results in vinasse with a pH that is naturally acidic, which, if 

it is not neutralized, might potentially impede the process of 

anaerobic digestion [21], [22], [23]. Biomethane production 

is a complex and nonlinear process, especially when 
biowaste and food waste are used together This process is 

influenced by a variety of independent controls, making it 

difficult to apply strategies a they will often use modeling 

effectively. But modern machine learning approaches offer a 

promising alternative by capturing complex patterns in the 

input and output dynamics of food waste and agricultural 

waste In this context , the present study explores the use of 

modern machine learning techniques to model, predict and 

simulate complex nonlinear processes involved in organic 

waste co-treatment, such as artificial neural networks or 

support vector devices, researchers said aim to gain deeper 
insights into the mechanisms underlying biomethane 

production and improve system efficiency This new 

approach sustains bioenergy production to improve waste 

energy processes and deliver great power to improve. 

II. MATERIALS AND METHODS 

A. Raw materials and biomethane generation 

The raw sugarcane vinasse was acquired from rural-based 

sugar manufacturing plant working on sugarcane. It was 

processed, filtered, and refrigerated at sun zero temperature. 
The subsequent analysis to determine its chemical oxygen 

demand (COD) and approximate content. To prepare the test 

substrate, the vinasse was diluted to a specific COD 

concentration by mixing with deionized water before 

introduction into the specially designed reactor. The 

substrate’s pH was adjusted to seven by introducing 0.05 

litre of sodium hydroxide per liter of substrate. Sewage 

treatment waste (STW), abundantly available from various 

sources including food factories, tea shops, and residences, 

was chosen as an organic waste feedstock for its potential 

energy production. In a circular economy framework, 
utilizing STW for biogas generation aligns with 

sustainability goals. To enhance biogas production it was 

supplemented with pigeon droppings. Experiments were 

conducted using conventional pilot-scale anaerobic digesters. 

The samples were stored in 5L glass reactors with airtight 

seals.  The trials were conducted under mesophilic 

conditions, with mechanical stirrer facilitated regular mixing 

of the substrate, and biogas volume measurements were 

taken after manual agitation of each digester twice daily.  

B. Extreme gradient boosting 

XGBoost is widely recognized as an industry leader in 

machine learning due to its exceptional ability to solve a 

wide range of problems in numerous domains with 

remarkable accuracy and efficacy. The nomenclature of this 

algorithm, which stands for "eXtreme Gradient Boosting," 

succinctly captures its prowess: an amalgamation of gradient 

boosting techniques accompanied by substantial 
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improvements in performance. XGBoost, which was initially 

designed by Tianqi Chen and his colleagues, has since 

become an indispensable instrument for data scientists and 

practitioners who aim to advance the limits of predictive 

modeling and optimization. XGBoost functions according to 

the ensemble learning paradigm, in which a resilient 

predictive model is constructed by combining multiple poor 

learners. On the contrary, XGBoost distinguishes itself 

through its clever execution of gradient boosting, a 

technique that enhances the performance of the model 
through the minimization of a predetermined loss function. 

By concentrating on the instances in which the model 

exhibits subpar performance, XGBoost iteratively enhances 

its predictive capabilities and consequently improves its 

accuracy [24], [25].  

XGBoost exhibits a notable degree of versatility and 

adaptability, rendering it suitable for an extensive array of 

tasks encompassing classification, regression, ranking, and 

recommendation systems. Whether it be foretelling stock 

prices in finance, optimizing ad placements in digital 

marketing, or predicting customer attrition in 
telecommunications, XGBoost consistently provides cutting-

edge outcomes, solidifying its standing as the preferred 

solution for numerous practical scenarios. However, what 

genuinely differentiates XGBoost is its capacity to 

efficiently process enormous datasets due to its optimized 

architecture and parallel processing capabilities. By 

capitalizing on the capabilities of distributed computing 

frameworks such as Apache Spark and Dask, XGBoost can 

scale effortlessly to accommodate datasets comprising 

thousands of features and millions of records, rendering it an 

optimal choice for industrial-scale deployments and big data 
analytics. Additionally, XGBoost provides an extensive array 

of hyperparameters that facilitate customization and fine-

tuning to accommodate particular use cases and specifications. 

Users have complete authority over the model's behavior, 

including the ability to adjust learning rates, regularization 

penalties, tree structure, and depth. This empowers them to 

attain optimal performance even when confronted with the 

most difficult circumstances [26], [27], [28]. 

Notwithstanding its numerous merits, XGBoost is not 

devoid of obstacles and factors to be taken into account. 

Similar to other machine learning algorithms, optimizing its 

performance necessitates meticulous data preprocessing, 
feature engineering, and hyperparameter optimization. 

Furthermore, although XGBoost demonstrates exceptional 

predictive accuracy, its opaque structure may occasionally 

impede interpretability, thereby complicating the extraction 

of significant insights through the model's forecasts—a 

compromise that professionals must tactfully manage. In 

anticipation of the future, XGBoost exhibits encouraging 

signs, as continuous research and development endeavors are 

directed towards augmenting its functionalities. The 

progression of XGBoost, which involves the integration of 

sophisticated optimization methods and the investigation of 
novel approaches to enhance the interpretability and 

explicability of models, remains a catalyst for advancements 

in machine learning and predictive analytics [29], [30].  

In summary, XGBoost serves as a compelling illustration 

of how collaboration and innovation can propel the 

boundaries of machine learning forward. XGBoost has 

solidified its position as a fundamental instrument in the 

repertoire of data scientists due to its exceptional 

performance, scalability, and adaptability. This enables 

professionals to address intricate challenges and discover 

fresh prospects within the continuously expanding domain of 

decision-making based on data. 

III. RESULTS AND DISCUSSION 

In the present study, linear regression and XGBoost was 

employed for prediction modelling of biomethane generation 

data from anaerobic digestion of waste organic materials. 

The python based open access libraries were used in Jupyter.  

A. Correlational analysis of data 

The correlation heatmap is depicted in Figure 1 while the 

correlation matrix is listed in Table 1. An understanding of 
the connections that exist between the various variables in 

the dataset may be gained via the use of the correlation 

matrix. Vinasse (percent), Pigeon Dropping (percent), 

Incolcum to Substrate (percent), Hours of Rainfall (percent), 

OLR (percent), and Biomethane yield (ml/gVS) are some of 

the variables that correlate to each row and column in the 

matrix to which they belong. There is a correlation 

coefficient between these variables, and the numbers 

included inside the matrix represent that connection. One 

thousand is the correlation coefficient that shows a perfect 

positive connection, whereas one thousand is the correlation 

coefficient that indicates a perfect negative correlation.  
 

 
Fig. 1  Correlation heatmap of biomethane generation  

 

The correlation coefficient of 1.000 between the 
percentage of Vinasse and the percentage of Pigeon 

Dropping implies that there is a significant negative 

connection between the two variables. This means that as the 

percentage of Vinasse, the percentage of Pigeon Dropping 

drops, and vice versa. Similar to the previous example, the 

correlation coefficient between Vinasse (%) and Yield 

(ml/gVS) is -0.346, which shows a somewhat negative 

connection. This suggests that a rise in Vinasse (%) is 

connected with a drop in Biomethane yield (ml/gVS). The 

correlation coefficient between Incolcum to Substrate (%) 

and OLR (%) is 0.079, which indicates that there is a rather 
weak positive association between the two variables. These 
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correlations provide useful insights into the 

interdependencies that exist between various variables, and 

they have the potential to guide future analysis and decision-

making processes in the context of waste-to-energy and 

biomethane production. 

TABLE I 

CORRELATION MATRIX  

 V, % PD, % 
ISR, 
% 

HRT, 
Hrs 

OLR, 
% 

Yield, 
ml/ 
gVS 

V, % 1.000 -1.000 0.149 0.096 0.056 -0.346 

PD, % -1.000 1.000 -0.149 -0.096 -0.056 0.346 

ISR, % 0.149 -0.149 1.000 -0.075 0.079 0.042 

HRT, 
Hrs 0.096 -0.096 -0.075 1.000 -0.088 0.169 

OLR, % 
0.056 -0.056 0.079 -0.088 1.000 -0.190 

Yield, 
ml/gVS 

-0.346 0.346 0.042 0.169 -0.190 1.000 

B. Model development and comparison 

The models were developed and tested on different 
statistical metrics namely, R, R2, Mean squared error, mean 

absolute error, Kling – Gupta Efficiency (KGE).  This study 

presents the training and test results of both linear regression 

(LR) and XGBoost models aimed at predicting the amount 

of biomethane production. During the training phase, the LR 

model was able to obtain R2 value of 0.65464. These results 

indicate that the model was able to explain about 65.46% of 

the variation in data related to biomethane production. The 

performance of the XGBoost model was significantly better 

than that of the LR model, with an impressive R2 value of 

0.99994, indicating an almost perfect fit to the training data. 
In the case of prediction errors LR had higher levels of 

errors as 164.97 MSE and 9.97 as MAE, compared to 

XGBoost with a MSE and MAE at 0.042 and 0.083, 

respectively.  

TABLE II 

MODEL OUTPUTS IN STATISTICAL TERMS  
 Training of models 

Model R R2 KGE MSE MAE 

LR 0.8104 0.65464 0.7044 164.97 9.97 

XGBoost 0.99994 0.99994 0.99994 0.042 0.083 

 Testing of models 

Model R R2 KGE MSE MAE 

LR 0.98103 0.9553 0.9357 30.26 3.622 

XGBoost 0.9978 0.9902 0.9398 6.61 1.66 

 
In the testing phase, the models were evaluated with a 

fresh potion of data.  LR had fair enough predictive 

performance, as shown by its R2 value of 0.9553. This figure 

indicates that the model was able to explain around 95.53% 

of the variation in the biomethane yield data. Throughout the 

testing process, the XGBoost model maintained its 

exceptional performance, reaching an R2 value of 0.9902, 

indicating that it provided a high fit to the data under test 

More specifically, LR yielded a MSE of 30.26 and mean 

absolute error (MAE) of 3.622, but XGBoost gave the 

lowest estimates of 6.61 for MSE and 1.66 for MAE. The 

model performance as shown in Figure 2 during model 

training and Figure 3 for model testing. It demonstrates that 

XGBoost was superior to LR based models.  

 

 

(a) 

 

                                        (b)                                                                        

Fig. 2  Measure vs Model predicted biomethane yield during mode training 

for (a) linear regression (b) XGBoost   

 

The XGBoost model outperformed the LR model in terms 

of accuracy, reliability, and predictive power. Generally, the 

XGBoost model showed impressive performance in both the 

training and testing phases. These findings indicate that 

XGBoost is a successful tool for estimating the amount of 

biomethane produced, and the potential to improve 

biomethane production processes.  

 
(a) 
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Fig. 3  Measure vs Model predicted biomethane yield during mode testing 

for (a) linear regression (b) XGBoost   

 

For the purpose of comparing models, the Taylor's 

diagram was used, as shown in Figure 4a for the training of 

models and Figure 4b for the testing of models. It is not 

difficult to see that XGBoost has the potential to perform 

much better than models that are based on LR.  

 

 
(a) 

 
(b) 

Fig. 4  Taylor’s plots for model (a) training (b) testing  

IV. CONCLUSION 

The current work investigates how modern machine 

learning algorithms can be used to predict the complex 

biomethane generation process from organic wastes, such as 

biowaste or food waste. The study looks into the use of 

organic sludges and how intelligent methods can be used to 
understand the complex nonlinear processes involved in 

biomethane synthesis. Linear regression and Extreme 

gradient boosting (XGBoost)-based prediction models were 

created and evaluated using a wide range of statistical 

parameters. The following are the main results of the study: 

XGBoost model outperformed Linear Regression (LR) in 

training and testing phases; XGBoost achieved an R2 value 

of 0.99994 during training, indicating perfect data fit; 

XGBoost outperformed LR in testing with R2 values of 

0.9553 to 0.9902; XGBoost reduced prediction errors with 

lower MSE and MAE values; Taylor’s graph demonstrates 
XGBoost's superior performance in both training and testing. 
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