Tracking System on Autonomous Vehicle using Radiolink M8N SE100 with Kalman Filter Method Based on Rasberry PI

Nabila Muti Karimah (1), Agus Trisanto (2), Nanang Rohadi (3), Herwanto (4)
(1) Department of Electrical engeneering, Universitas Padjadjaran, Jatinangor, Indonesia
(2) Department of Electrical engeneering, Universitas Padjadjaran, Jatinangor, Indonesia
(3) Department of Electrical engeneering, Universitas Padjadjaran, Jatinangor, Indonesia
(4) Faculty of Engeneering, Universitas Krisnadwipayana, Jakarta, Indonesia
Fulltext View | Download
How to cite (COMIEN) :
Karimah , N. M., Trisanto , A., Rohadi , N., & Herwanto. (2025). Tracking System on Autonomous Vehicle using Radiolink M8N SE100 with Kalman Filter Method Based on Rasberry PI . International Journal on Computational Engineering, 2(4), 127–136. https://doi.org/10.62527/comien.2.4.71

An autonomous vehicle is a robot that can move automatically toward the destination. This technology has the potential to change people's lifestyles, making future transportation systems safer, and can also be implemented for logistics delivery to areas that are difficult to reach. This final project aims to drive an autonomous vehicle to a specified destination using the Global Positioning System (GPS) and a compass sensor. Data from the compass sensor was used to determine the heading and bearing to determine the direction of motion of the autonomous vehicle. When testing the M8030 GPS in silent conditions for five minutes, the problems had an average measurement error of 4.78 meters. The Kalman Filter method was applied to minimize these inaccuracies, which is ideal for dynamic systems. The test results using the Kalman Filter with R=10 showed an average difference between the stop point and the target point of 7,285 meters, while the test results without the Kalman Filter showed a difference of more than 10 meters in each test. These results indicated that the Kalman Filter tracking system works well to reduce noise Then testing on the Compass QMC5883L sensor showed a small percentage of error with an average of 0.36%. In future research, it can use other GPS modules with more robust signal locking because autonomous vehicles need accuracy and precision. It is possible to increase the performance of the autonomous vehicle by adding a controller to the system.

A. S. Taufik, "Sistem navigasi waypoint pada autonomous mobile robot," J. Tek. Elektro Univ. Brawijaya, pp. 1–10, 2013. [Online]. Available: https://media.neliti.com/media/publications/114654-ID-none.pdf.

D. Parekh et al., "A review on autonomous vehicle: Progress, methods, and challenges," Electronics, vol. 11, no. 14, p. 2162, Jul. 2022, doi: 10.3390/electronics11142162.

W. Farag, "A comprehensive vehicle-detection-and-tracking technique for autonomous driving," Int. J. Comput. Digit. Syst., vol. 9, no. 4, pp. 567–576, 2020, doi: 10.12785/ijcds/090401.

R. Gutiérrez et al., "A waypoint tracking controller for autonomous road vehicles using ROS framework," Electronics, vol. 9, no. 9, p. 1401, Aug. 2020, doi: 10.3390/electronics9091401.

D. F. Ginting, E. Susanto, and R. Nugraha, "Robot beroda otomatis dengan sistem navigasi koordinat global positioning system (GPS) dengan menggunakan kontrol fuzzy logic," e-Proceeding Eng., vol. 3, no. 3, pp. 3187–3195, 2016.

R. E. Saputra, S. Aulia, and S. Rangkuti, "Desain prototype sistem kendali dan pelacakan pada mesin boat," J. Rekayasa Elektrika, vol. 17, no. 2, pp. 98–107, 2021, doi: 10.17529/jre.v17i2.19900.

Firdaus and Ismail, "Komparasi akurasi global positioning system (GPS) receiver u-blox NEO-6M dan u-blox NEO-M8N pada navigasi quadcopter," Elektron J. Ilmiah, vol. 12, no. 1, pp. 29–36, 2020, doi:10.30630/eji.12.1.137.

R. A. Wibowo, "Implementasi autonomous navigation robot menggunakan global positioning system (GPS) untuk pemetaan kadar gas berbahaya," B.S. thesis, Dept. Tek. Elektro, Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia, 2017.

M. A. R. Wicaksono, F. Kurniawan, and Lasmadi, "Kalman filter untuk mengurangi derau sensor accelerometer pada IMU guna estimasi jarak," J. AVITEC, vol. 2, no. 2, pp. 109–120, 2020, doi:10.28989/avitec.v2i2.752.

G. Welch and G. Bishop, "An introduction to the Kalman filter," Univ. North Carolina, Chapel Hill, NC, USA, Tech. Rep. TR 95-041, 2006.

K. Jo et al., "Development of autonomous car—Part I: Distributed system architecture and development process," IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 7131–7140, Dec. 2014, doi:10.1109/TIE.2014.2321342.

C. Q. Choi, "How self-driving cars might transform city parking," IEEE Spectr., Jun. 01, 2015. [Online]. Available: https://spectrum.ieee.org/new-technology-2026.

W. R. Pratama et al., "Implementasi kontrol PID pada sistem robot beroda untuk pelacak posisi dengan GPS," eProceedings Eng., vol. 6, no. 1, pp. 1120–1127, 2019.

A. R. Fikri, K. Anam, and W. Cahyadi, "Rancang bangun sistem navigasi robot beroda pemandu orang dengan penyandang tuna netra menggunakan metode waypoint," J. Rekayasa Elektrika, vol. 16, no. 3, pp. 207–215, 2020, doi: 10.17529/jre.v16i3.15711.

Y. Izza, "Mobile robot bertenaga surya untuk pemetaan konsentrasi gas," B.S. thesis, Dept. Tek. Elektro, Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia, 2018.

S. Khan et al., "Waypoint navigation system implementation via a mobile robot using global positioning system (GPS) and global system for mobile communication (GSM) modems," Int. J. Comput. Eng. Res., vol. 3, no. 2, pp. 29–33, 2013.

R. R. Irawan, "Prototipe pemberitahuan lokasi koordinat darurat menggunakan GPS dan pulse sensor berbasis Arduino dan SMS," B.S. thesis, Fak. Tek., Univ. Muhammadiyah Gresik, Gresik, Indonesia, 2017, doi: 10.30587/e-link.v6i1.655.

U-blox, UBX-M8030 Product Summary, U-blox, Thalwil, Switzerland, Data Sheet, 2018. [Online]. Available: https://www.u-blox.com/sites/default/files/products/documents/UBX-M8030_ProductSummary_%28UBX-15031082%29.pdf.

A. A. D. Setyawan, Q. Fitriyah, and B. Y. Nugroho, "Pengujian sensor HMC5883L untuk purwarupa robot beroda," in Proc. Semin. Nas. NCIET, 2020, pp. 250–257, doi: 10.32497/nciet.v1i1.153.

Radiolink, SE100 GPS User Manual, Radiolink, Shenzhen, China, 2020. [Online]. Available: https://www.radiolink.com/manual/se100_manual.

Dhopir, M. I. Ali, and M. D. Prasetyo, "Rancang bangun alat otomatisasi pembuatan beton berbasis PLC," B.S. thesis, Fak. Tek., Univ. 17 Agustus 1945 Surabaya, Surabaya, Indonesia, 2018.

G. Welch and G. Bishop, "An introduction to the Kalman filter," Univ. North Carolina, Chapel Hill, NC, USA, Tech. Rep. TR 95-041, 2006.

R. B. Putra and S. Agoes, "Design of a fuel sensor noise reduction system using Kalman filter," ELKHA, vol. 13, no. 1, pp. 48–54, Apr. 2021, doi: 10.26418/elkha.v13i1.44589.

W. Farag, "Multiple road-objects detection and tracking for autonomous driving," J. Eng. Res., vol. 10, no. 1A, pp. 1–13, 2021, doi: 10.36909/jer.10993.

I. M. Zeki et al., "A review on localization algorithms of mobile robot in different environments," J. Algebraic Statist., vol. 13, no. 2, pp. 1445–1454, 2022.