Interaction of Isorhamnetin in Red Onion (Allium cepa) with Xanthine Dehydrogenase as Purine Metabolism
How to cite (IJASEIT) :
This research aims to study the interaction between Isorhamnetin compound and Xanthine Dehydrogenase enzyme in onion (Allium cepa) as part of purine metabolism. The research methods used include the use of Pymol, Pyrex, Protein Plus, and Lepinski Rule software. The use of Pymol was used to visualize the structure of Isorhamnetin and Xanthine Dehydrogenase in the interaction complex. The use of Pyrex was used for the calculation of binding affinity (kcal/moles) between Isorhamnetin and Xanthine Dehydrogenase, with results of -8.2, -7.9, and -7.9. Protein Plus indicated the interaction between Isorhamnetin and Xanthine Dehydrogenase. Additionally, analysis using the Lepinski Rule revealed that Isorhamnetin has a mass of 316, a hydrogen bond donor of 4, a hydrogen bond acceptor of 7, a log P of 2.313, and a molar reactivity of 78.937. These results provide a better understanding of the interaction mechanism of Isorhamnetin with Xanthine Dehydrogenase in shallots, which can be used for the development of potential therapies in the regulation of purine metabolism.
Huang, Z., Xie, N., Illes, P., Di Virgilio, F., Ulrich, H., Semyanov, A., ... & Tang, Y. (2021). From purines to purinergic signalling: molecular functions and human diseases. Signal Transduction and Targeted Therapy, 6(1), 162.
Sharma, S., Singh, J., Ojha, R., Singh, H., Kaur, M., Bedi, P. M. S., & Nepali, K. (2016). Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. European journal of medicinal chemistry, 112, 298-346.
Yin, J., Ren, W., Huang, X., Deng, J., Li, T., & Yin, Y. (2018). Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in immunology, 9, 1697.
Wang, C. H., Zhang, C., & Xing, X. H. (2016). Xanthine dehydrogenase: An old enzyme with new knowledge and prospects. Bioengineered, 7(6), 395-405.
Ma, X., Wang, W., Bittner, F., Schmidt, N., Berkey, R., Zhang, L., ... & Xiao, S. (2016). Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in Arabidopsis. The Plant Cell, 28(5), 1108-1126.
Maia, L. B., Pereira, V., Mira, L., & Moura, J. J. (2015). Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry, 54(3), 685-710.
Gong, G., Guan, Y. Y., Zhang, Z. L., Rahman, K., Wang, S. J., Zhou, S., & Zhang, H. (2020). Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy, 128, 110301.
González-Arceo, M., Gomez-Lopez, I., Carr-Ugarte, H., Eseberri, I., González, M., Cano, M. P., ... & Gómez-Zorita, S. (2022). Anti-Obesity Effects of Isorhamnetin and Isorhamnetin Conjugates. International Journal of Molecular Sciences, 24(1), 299.
Li, W. Q., Li, J., Liu, W. X., Wu, L. J., Qin, J. Y., Lin, Z. W., ... & Peng, C. (2022). Isorhamnetin: A novel natural product beneficial for cardiovascular disease. Current Pharmaceutical Design, 28(31), 2569-2582.
Nguyen Thu, H., Ngo Minh, K., Le Thi, T., & Nguyen Van, P. (2021). Optimization of extraction of flavonoids from shallot skin using response surface methodology based on multiple linear regression and artificial neural network and evaluation of its xanthine oxidase inhibitory activity. Journal of Food Measurement and Characterization, 15, 2173-2183.
Nguyen, T. H., Ngo, M. K., & Van Phuong, N. (2021). Optimization of extraction of flavonoids from shallot skin using response surface methodology based on multiple linear regression and artificial neural network and evaluation of its xanthine oxidase inhibitory activity. Journal of Food Measurement & Characterization, 15(3), 2173-2183.
Nile, S. H., Nile, A. S., Keum, Y. S., & Sharma, K. (2017). Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food chemistry, 235, 119-126.
Bortolotti, M., Polito, L., Battelli, M. G., & Bolognesi, A. (2021). Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biology, 41, 101882.
Battelli, M. G., Bortolotti, M., Polito, L., & Bolognesi, A. (2018). The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(8), 2557-2565.
Kostić, D. A., Dimitrijević, D. S., Stojanović, G. S., Palić, I. R., Đorđević, A. S., & Ickovski, J. D. (2015). Xanthine oxidase: isolation, assays of activity, and inhibition. Journal of Chemistry, 2015.
Wang, F., Zhao, X., Su, X., Song, D., Zou, F., & Fang, L. (2021). Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice. Food & Function, 12(24), 12503-12512.
Ajala, O. S., Ayeleso, A. O., Owolabi, M., Akinleye, M. O., & Ukpo, G. (2022). Xanthine oxidase inhibitory potentials of flavonoid aglycones of Tribulus terrestris: in vivo, in silico and in vitro studies. Future Journal of Pharmaceutical Sciences, 8(1), 1-15.
Aini, N. S., Kharisma, V. D., Widyananda, M. H., Murtadlo, A. A. A., Probojati, R. T., Turista, D. D. R., ... & Zainul, R. (2022). In Silico Screening of Bioactive Compounds from Garcinia mangostana L. Against SARS-CoV-2 via Tetra Inhibitors. Pharmacognosy Journal, 14(5).
Listiyani, P., Utami, S. L., Turista, D. D. R., Wiguna, A., Wijayanti, A., Rachmawati, Y., ... & Naw, S. W. (2022). Computational Screening of Toxicity, Drug-like Molecule, and Bioactivity from Green Tea Phytochemical as Antiviral Candidate. SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 1(02), 39-45.
Aini, N. S., Kharisma, V. D., Widyananda, M. H., Ali Murtadlo, A. A., Probojati, R. T., Rahma Turista, D. D., ... & Maahury, M. F. (2022). Bioactive Compounds from Purslane (Portulaca oleracea L.) and Star Anise (Illicium verum Hook) as SARS-CoV-2 Antiviral Agent via Dual Inhibitor Mechanism: In Silico Approach. Pharmacognosy Journal, 14(4).
Rabaan, A. A., Halwani, M. A., Aljeldah, M., Al Shammari, B. R., Garout, M., Aldali, J., ... & Alsayyah, A. (2023). Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Biomolecular Structure and Dynamics, 1-21
Rahman, A. T., Jethro, A., Santoso, P., Kharisma, V. D., Murtadlo, A. A. A., Purnamasari, D., ... & Sari, D. A. P. (2022). In Silico Study of the Potential of Endemic Sumatra Wild Turmeric Rhizomes (Curcuma Sumatrana: Zingiberaceae) As Anti-Cancer. Pharmacognosy Journal, 14(6).
Murtadlo, A. A. A., Listiyani, P., Utami, S. L., Wahyuningsih, S., Turista, D. D. R., Wiguna, A., ... & Ullah, M. E. (2022). Molecular Docking Study of Nigella sativa Bioactive Compound as E6 Inhibitor Against Human Papillomavirus (HPV) Infection. SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 1(02), 32-38.
Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18).
Hemalatha, G., Sivakumari, K., Rajesh, S., & K, S. D. (2020). In silico molecular docking studies of muricin J, muricin K and muricin L compound from A. muricata againts apoptotic proteins (caspase-3, caspase-9 and β-actin). Innoriginal Originating Innovation, 7(5), 1–4.
Lin, X., Li, X., & Lin, X. (2020). A review on applications of computational methods in drug screening and design. Molecules, 25(6), 1–17.
Patel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503–510.
Dibha, A. F., Wahyuningsih, S., Ansori, A. N. M., Kharisma, V. D., Widyananda, M. H., Parikesit, A. A., ... & Zainul, R. (2022). Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method. Pharmacognosy Journal, 14(3).
Ojo, O. A., Ojo, A. B., Okolie, C., Nwakama, M. A. C., Iyobhebhe, M., Evbuomwan, I. O., Nwonuma, C. O., Maimako, R. F., Adegboyega, A. E., Taiwo, O. A., Alsharif, K. F., & Batiha, G. E. S. (2021). Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against alzheimer’s diseases via pharmacophore modeling, auto-QSAR, and molecular docking approaches. Molecules, 26(7).
De Ávila, M. B., & de Azevedo, W. F. (2018). Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chemical Biology and Drug Design, 92(2), 1468–1474.
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14.
Lemkul, J. (2019). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53.
Mawaddani, N., Sutiyanti, E., Widyananda, M. H., Kharisma, V. D., Turista, D. D. R., Tamam, M. B., ... & Zainul, R. (2022). In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive Compounds against SARS-CoV-2 Infection. Pharmacognosy Journal, 14(5).
Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. Journal of computational biology, 27(9), 1397-1406.
Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A. (2020). Lipinski’s rule of five, famous extensions and famous exceptions. Popular Scientific Article, 3(1), 171-177.
Kharisma, V. D., Ansori, A. N. M., Dian, F. A., Rizky, W. C., Dings, T. G. A., Zainul, R., & Nugraha, A. P. (2021). Molecular Docking And Dynamic Simulation Of Entry Inhibitor From Tamarindus Indica Bioactive Compounds Against Sars-Cov-2 Infection Via Viroinformatics Study. Biochemical and Cellular Archives, 21(2), 3323-3327.
Akyuz Turumtay, E., Demir, A., Cetiz, M. V., Uludag, E. B., Baltaş, N., Yaman, B., ... & Turumtay, H. (2023). Metabolite profiling of Althaea officinalis by HPLC-DAD-MS with in silico and in vitro analysis for therapeutic potential. Chemical Papers, 1-19.
Liu, Y., Han, C., Lu, T., Liu, Y., Chen, H., Yang, C., ... & Li, Y. (2021). Investigation of the interaction between Chrysoeriol and xanthine oxidase using computational and in vitro approaches. International Journal of Biological Macromolecules, 190, 463-473.
Li, J., Gong, Y., Li, J., & Fan, L. (2022). In vitro xanthine oxidase inhibitory properties of Flos Sophorae Immaturus and potential mechanisms. Food Bioscience, 47, 101711.
Li, J., Gong, Y., Li, J., & Fan, L. (2023). Hydrothermal treatment improves xanthine oxidase inhibitory activity and affects the polyphenol profile of Flos Sophorae Immaturus. Journal of the Science of Food and Agriculture, 103(3), 1205-1215.
Adachi, S. I., Kondo, S., Sato, Y., Yoshizawa, F., & Yagasaki, K. (2019). Anti-hyperuricemic effect of isorhamnetin in cultured hepatocytes and model mice: structure–activity relationships of methylquercetins as inhibitors of uric acid production. Cytotechnology, 71, 181-192.
Wang, F., Zhao, X., Su, X., Song, D., Zou, F., & Fang, L. (2021). Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice. Food & Function, 12(24), 12503-12512.
Zou, F., Zhao, H., Ma, A., Song, D., Zhang, X., & Zhao, X. (2022). Preparation of an isorhamnetin phospholipid complex for improving solubility and anti-hyperuricemia activity. Pharmaceutical Development and Technology, 27(7), 842-852.
Jabir, N. R., Rehman, M. T., Alsolami, K., Shakil, S., Zughaibi, T. A., Alserihi, R. F., Khan, M. S., AlAjmi, M. F., & Tabrez, S. (2021). Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment. Annals of Medicine, 53(1), 2332–2344.
Aini, N. S., Kharisma, V. D., Widyananda, M. H., Murtadlo, A. A. A., Probojati, R. T., Turista, D. D. R., ... & Zainul, R. (2022). In silico screening of bioactive compounds from Syzygium cumini L. and moringa oleifera L. against SARS-CoV-2 via tetra inhibitors. Pharmacognosy Journal, 14(4).
Probojati, R. T., Murtadlo, A. A. A., Ullah, M. E., Naw, S. W., & Turista, D. D. R. (2022). Molecular Docking Study of HIV-1 Antiretroviral Candidate via Reverse Transcriptase Inhibitor from Zingiber officinale var. Roscoe. SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 1(01), 26-31.
Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 1–29.
Mathew, B., Suresh, J., E Mathew, G., A Rasheed, S., K Vilapurathu, J., & Jayaraj, P. (2015). Flavonoids: An outstanding structural core for the inhibition of xanthine oxidase enzyme. Current Enzyme Inhibition, 11(2), 108-115.
Listiyani, P., Kharisma, V. D., Ansori, A. N. M., Widyananda, M. H., Probojati, R. T., Murtadlo, A. A. A., ... & Zainul, R. (2022). In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2. Pharmacognosy Journal, 14(3).
Rahaman, M. S., Siraj, M. A., Islam, M. A., Shanto, P. C., Islam, O., Islam, M. A., & Simal-Gandara, J. (2022). Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids-a comprehensive update. The Journal of Nutritional Biochemistry, 110, 109147.
Mohos, V., Pánovics, A., Fliszár-Nyúl, E., Schilli, G., Hetényi, C., Mladěnka, P., ... & Poór, M. (2019). Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. International Journal of Molecular Sciences, 20(11), 2681.