Model-prediction of Efficiency of a Parabolic Trough Collector Using Data-Driven Soft Computing
How to cite (IJASEIT) :
The study highlights the need to use suitable modeling techniques to accurately predict the efficiency of parabolic trough collectors in light of their significance in renewable energy. An examination of prediction models using the Linear Regression (LR), Support Vector Regression (SVR), and Decision Tree (DT) algorithms for the efficiency of parabolic trough collectors provides insightful information about how well they work. In terms of prediction accuracy and precision, the Decision Tree model regularly performs better than its rivals throughout the training and testing phases. What sets it apart from SVR and LR models is its ability to identify minute relationships within the data. SVR performs better than LR, although it is not as exact or accurate as the DT model. Among the three models, Linear Regression has the lowest performance, underscoring its limitations in terms of capturing non-linear relationships. Given its exceptional performance, the Decision Tree model may prove to be a crucial instrument in encouraging the design and construction of solar energy systems, hence advancing the growth of sustainable development projects and renewable energy technology.
A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications,” Prog Energy Combust Sci, vol. 35, no. 3, pp. 231–244, Jun. 2009, doi: 10.1016/J.PECS.2008.07.004.
R. Loni et al., “A review of solar-driven organic Rankine cycles: Recent challenges and future outlook,” Renewable and Sustainable Energy Reviews, vol. 150, p. 111410, Oct. 2021, doi: 10.1016/j.rser.2021.111410.
A. Rahman, O. Farrok, and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic,” Renewable and Sustainable Energy Reviews, vol. 161, p. 112279, Jun. 2022, doi: 10.1016/J.RSER.2022.112279.
A. K. Pandey et al., “Energy, exergy, exergoeconomic and enviroeconomic (4-E) assessment of solar water heater with/without phase change material for building and other applications: A comprehensive review,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101139, 2021, doi: 10.1016/j.seta.2021.101139.
Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Appl Energy, vol. 104, 2013, doi: 10.1016/j.apenergy.2012.11.051.
F. Hyder, K. Sudhakar, and R. Mamat, “Solar PV tree design: A review,” Renewable and Sustainable Energy Reviews, vol. 82. 2018. doi: 10.1016/j.rser.2017.09.025.
M. Barrasso, G. Langella, A. Amoresano, and P. Iodice, “Latest Advances in Thermal Energy Storage for Solar Plants,” Processes, vol. 11, no. 6. 2023. doi: 10.3390/pr11061832.
M. Al-Jethelah, S. H. Tasnim, S. Mahmud, and A. Dutta, “Nano-PCM filled energy storage system for solar-thermal applications,” Renew Energy, vol. 126, pp. 137–155, Oct. 2018, doi: 10.1016/J.RENENE.2018.02.119.
T. I. Zohdi, “A machine-learning digital-twin for rapid large-scale solar-thermal energy system design,” Comput Methods Appl Mech Eng, vol. 412, 2023, doi: 10.1016/j.cma.2023.115991.
K. Shahverdi, E. Bellos, R. Loni, G. Najafi, and Z. Said, “Solar-driven water pump with organic Rankine cycle for pressurized irrigation systems: A case study,” Thermal Science and Engineering Progress, vol. 25, p. 100960, Oct. 2021, doi: 10.1016/j.tsep.2021.100960.
E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, Jun. 2020, doi: 10.1016/J.SETA.2020.100714.
C. Artur, D. Neves, B. C. Cuamba, and A. J. Leão, “Comparison of two dynamic approaches to modelling solar thermal systems for domestic hot water,” Sustainable Energy Technologies and Assessments, vol. 30, 2018, doi: 10.1016/j.seta.2018.10.012.
N. Khani, M. H. Khoshgoftar Manesh, and V. C. Onishi, “Optimal 6E design of an integrated solar energy-driven polygeneration and CO2 capture system: A machine learning approach,” Thermal Science and Engineering Progress, vol. 38, 2023, doi: 10.1016/j.tsep.2023.101669.
E. Bellos and C. Tzivanidis, “Development of an analytical model for the daily performance of solar thermal systems with experimental validation,” Sustainable Energy Technologies and Assessments, vol. 28, 2018, doi: 10.1016/j.seta.2018.05.003.
V. Badescu, “Optimal control of flow in solar collectors for maximum exergy extraction,” Int J Heat Mass Transf, vol. 50, no. 21–22, 2007, doi: 10.1016/j.ijheatmasstransfer.2007.01.061.
A. Bejan, “Extraction of exergy from solar collectors under time-varying conditions,” Int J Heat Fluid Flow, vol. 3, no. 2, 1982, doi: 10.1016/0142-727X(82)90002-9.
S. R. Shamshirgaran, H. H. Al-Kayiem, K. V. Sharma, and M. Ghasemi, “State of the art of techno-economics of nanofluid-laden flat-plate solar collectors for sustainable accomplishment,” Sustainability (Switzerland), vol. 12, no. 21. 2020. doi: 10.3390/su12219119.
A. Behzadi and S. Sadrizadeh, “A rule-based energy management strategy for a low-temperature solar/wind-driven heating system optimized by the machine learning-assisted grey wolf approach,” Energy Convers Manag, vol. 277, 2023, doi: 10.1016/j.enconman.2022.116590.
S. Tasneem, A. A. Ageeli, W. M. Alamier, N. Hasan, and M. Goodarzi, “Development of machine learning-based models for describing processes in a continuous solar-driven biomass gasifier,” Int J Hydrogen Energy, Aug. 2023, doi: 10.1016/j.ijhydene.2023.08.043.
T. Cheng, X. Zhu, F. Yang, and W. Wang, “Machine learning enabled learning based optimization algorithm in digital twin simulator for management of smart islanded solar-based microgrids,” Solar Energy, vol. 250, 2023, doi: 10.1016/j.solener.2022.12.040.
M. S. Alam, F. S. Al-Ismail, M. S. Hossain, and S. M. Rahman, “Ensemble Machine-Learning Models for Accurate Prediction of Solar Irradiation in Bangladesh,” Processes, vol. 11, no. 3, 2023, doi: 10.3390/pr11030908.
C. Yang et al., “Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: Dynamic modeling, data-driven optimization, and case study,” J Clean Prod, vol. 447, 2024, doi: 10.1016/j.jclepro.2024.141405.
A. Balali, M. J. R. Asadabadi, J. R. Mehrenjani, A. Gharehghani, and M. Moghimi, “Development and neural network optimization of a renewable-based system for hydrogen production and desalination,” Renew Energy, vol. 218, 2023, doi: 10.1016/j.renene.2023.119356.
H. Shakibi et al., “Exergoeconomic and optimization study of a solar and wind-driven plant employing machine learning approaches; a case study of Las Vegas city,” J Clean Prod, vol. 385, 2023, doi: 10.1016/j.jclepro.2022.135529.
T. Hai, M. M. Alhaider, P. Ghodratallah, P. kumar singh, F. Mohammed Alhomayani, and H. Rajab, “Techno-economic-environmental study and artificial intelligence-assisted optimization of a multigeneration power plant based on a gas turbine cycle along with a hydrogen liquefaction unit,” Appl Therm Eng, vol. 237, 2024, doi: 10.1016/j.applthermaleng.2023.121660.
C. Shanmugam and T. Meenakshi, “Role of Modern Tools in Solar Thermal System Design,” in Solar Thermal Conversion Technologies for Industrial Process Heating, 2023. doi: 10.1201/9781003263326-15.
A. Ahmadi and A. H. Saedi, “Solar Thermal Energy Systems Life Cycle Assessment,” in Solar Thermal Conversion Technologies for Industrial Process Heating, 2023. doi: 10.1201/9781003263326-13.
R. Petela, “Exergy of undiluted thermal radiation,” Solar Energy, vol. 74, no. 6, 2003, doi: 10.1016/S0038-092X(03)00226-3.
G. Shanmugasundar, M. Vanitha, R. Čep, V. Kumar, K. Kalita, and M. Ramachandran, “A comparative study of linear, random forest and adaboost regressions for modeling non-traditional machining,” Processes, vol. 9, no. 11, 2021, doi: 10.3390/pr9112015.
P. Pandit, P. Dey, and K. N. Krishnamurthy, “Comparative Assessment of Multiple Linear Regression and Fuzzy Linear Regression Models,” SN Comput Sci, vol. 2, no. 2, 2021, doi: 10.1007/s42979-021-00473-3.
Y. Wang et al., “Short-term load forecasting of industrial customers based on SVMD and XGBoost,” International Journal of Electrical Power and Energy Systems, vol. 129, p. 106830, Jul. 2021, doi: 10.1016/j.ijepes.2021.106830.
J. R. A. Morillas, I. C. Garcia, and U. Zolzer, “Ship detection based on SVM using color and texture features,” in 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), IEEE, Sep. 2015, pp. 343–350. doi: 10.1109/ICCP.2015.7312682.
R. Meenal and A. I. Selvakumar, “Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters,” Renew Energy, vol. 121, pp. 324–343, Jun. 2018, doi: 10.1016/J.RENENE.2017.12.005.
G. Najafi et al., “SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels,” Appl Therm Eng, vol. 95, pp. 186–203, Feb. 2016, doi: 10.1016/J.APPLTHERMALENG.2015.11.009.
S. B. Kotsiantis, “Decision trees: A recent overview,” Artificial Intelligence Review, vol. 39, no. 4. 2013. doi: 10.1007/s10462-011-9272-4.
J. Abdi, F. Hadavimoghaddam, M. Hadipoor, and A. Hemmati-Sarapardeh, “Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models,” Sci Rep, vol. 11, no. 1, p. 24468, 2021, doi: 10.1038/s41598-021-04168-w.
G. Nanfack, P. Temple, and B. Frénay, “Constraint Enforcement on Decision Trees: A Survey,” ACM Comput Surv, vol. 54, no. 10, 2022, doi: 10.1145/3506734.
M. A. Hafeez, M. Rashid, H. Tariq, Z. U. Abideen, S. S. Alotaibi, and M. H. Sinky, “Performance Improvement of Decision Tree: A Robust Classifier Using Tabu Search Algorithm,” Applied Sciences, vol. 11, no. 15, p. 6728, Jul. 2021, doi: 10.3390/app11156728.
O. Sagi and L. Rokach, “Approximating XGBoost with an interpretable decision tree,” Inf Sci (N Y), vol. 572, pp. 522–542, Sep. 2021, doi: 10.1016/J.INS.2021.05.055.
S. Elvidge, M. J. Angling, and B. Nava, “On the use of modified Taylor diagrams to compare ionospheric assimilation models,” Radio Sci, vol. 49, no. 9, 2014, doi: 10.1002/2014RS005435.
M. L. Simão, P. M. Videiro, P. B. A. Silva, L. P. de Freitas Assad, and L. V. S. Sagrilo, “Application of Taylor diagram in the evaluation of joint environmental distributions’ performances,” Marine Systems & Ocean Technology, vol. 15, no. 3, pp. 151–159, Sep. 2020, doi: 10.1007/s40868-020-00081-5.