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Abstract— The study highlights the need to use suitable modeling techniques to accurately predict the efficiency of parabolic trough 

collectors in light of their significance in renewable energy. An examination of prediction models using the Linear Regression (LR), 

Support Vector Regression (SVR), and Decision Tree (DT) algorithms for the efficiency of parabolic trough collectors provides 

insightful information about how well they work. In terms of prediction accuracy and precision, the Decision Tree model regularly 

performs better than its rivals throughout the training and testing phases. What sets it apart from SVR and LR models is its ability to 

identify minute relationships within the data. SVR performs better than LR, although it is not as exact or accurate as the DT model. 

Among the three models, Linear Regression has the lowest performance, underscoring its limitations in terms of capturing non-linear 

relationships. Given its exceptional performance, the Decision Tree model may prove to be a crucial instrument in encouraging the 

design and construction of solar energy systems, hence advancing the growth of sustainable development projects and renewable 

energy technology.  
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I. INTRODUCTION

In order to make improvements in one's day-to-day life 
and overall growth, energy is essential. There is an immense 
supply of energy on our planet, which may be harnessed for 
the purpose of producing electricity. This energy comes 
from both conventional and non-traditional sources. On the 
other hand, the depletion of conventional energy sources, 
such as fossil fuels like coal and petroleum, presents a 
substantial obstacle. In order to solve this issue, researchers 
and scientists are looking for new sources of energy to help 
bridge the remaining gap [1], [2]. In order to fulfill the 
demands for energy on a worldwide scale, renewable energy 
is emerging as a viable answer. Solar energy stands out 
among renewable sources owing to its plentiful availability, 
cleanliness, absence of atmospheric pollution, eco-
friendliness, and ecological sustainability. Solar energy also 
happens to be environmentally friendly. In spite of the fact 
that solar energy is only being used at a very tiny percentage 
(0.02%) of its capacity at the moment, it offers tremendous 
promise to supply the energy requirements of the world 
numerous times over [3], [4].  

India, in particular, is characterized by high levels of 
direct normal irradiance and has between 250 and 300 days 
of sunshine that are completely clear each year. Because of 
this, it is very suitable for the efficient exploitation of solar 
energy for the generation of both heat and electricity. In 
order to effectively harvest solar energy, solar thermal 
collectors are an essential component. The radiation from the 
sun is collected by these devices, which then transform it 
into either heat energy or electrical energy. Every system 
that is based on solar energy must include the solar collector 
as its foundational component [5], [6]. An overview of the 
basic classifications of sun collectors is shown in Figure 1 
[7], which also illustrates the many kinds of solar collectors.  

By harnessing solar energy, nations can meet their energy 
requirements in a manner that is both environmentally 
responsible and reduces their dependency on limited fossil 
fuel supplies. Furthermore, developments in solar 
technology continue to improve efficiency and cost, which 
makes solar energy an increasingly realistic answer for 
satisfying the needs for energy on a worldwide scale. 
Within the realm of renewable energy sources, solar energy 
is now the most readily available and plentiful of all the 
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available options. The use of solar thermal systems (STS) is 
widely regarded as one of the most effective solutions for the 
generation of energy from renewable sources [8], [9], [10]. 
Additionally, these systems contribute to the reduction of the 
issue of climate change. Solar energy is often recognized as 
a sign of clean and sustainable energy, in contrast to other 
kinds of energy that are not renewable and contribute to 
carbon dioxide emissions in the atmosphere. STS is an effort 
to transform solar energy towards heat in an effective 
manner, which would be a technique for producing 
environmentally friendly energy. According to the findings 
of many studies, the sun will continue to be a source of 
thermal energy for an additional four billion years. When the 
sky is clear, the typical amount of radiation that strikes a 
solar panel is around one thousand watts per square meter. 
This amount of radiation is adequate to provide hot water for 
a household. On the other hand, solar concentration panels 
are required in order to meet the thermal energy 
requirements at higher temperatures [11], [12].  

 

 
Fig. 1  Main types of solar thermal collectors [7] 

 
There are various innovative ways to provide heating 

materials derived from renewable energy. It is commonly 
acknowledged that greenhouse gases, particularly carbon 
dioxide, provide severe environmental difficulties. The 
usage of fossil fuels is associated with higher greenhouse gas 
emissions, which have a larger environmental effect, cost, 
and health consequences. Furthermore, continued use of 
fossil fuels depletes resources over time. Thus, it is critical to 
combine fossil fuel resources with renewables and other 
energy storage solutions in order to lessen civilization's 
dependency on fossil fuels [13], [14].  

Solar flat plate collectors (FPCs) are improving their 
thermal performance by expanding the absorber plate or 
increasing the heat transfer fluid (HTF) efficiency. Both 
techniques take into account the collector's energy and 
exergy efficiency. However, FPCs are renowned for having 
poor exergy efficiency and a restricted work extraction 

capability when compared to other solar collectors. An 
FPC's exergy efficiency may not surpass 5%, while having a 
maximum conversion potential of 5.3% from unconcentrated 
solar light. The issue of low exergy efficiency has persisted 
both conceptually and empirically, demanding much 
investigation for feasible remedies [15], [16], [17]. 
Blackbody absorbers, which have equal absorptance and 
emittance, are not suggested for efficiency improvement. 
Instead, spectrally selective absorbers, which have a larger 
absorptance than emittance, are thought to be beneficial for 
increasing FPC efficiency. Currently, very selective coatings 
are applied to copper and aluminum absorbers, providing 
absorptivity and emissivity values of 95% and 4%, 
respectively, at 100 degrees C. Researchers are also looking 
at the possibilities of employing other materials to obtain 
high selectivity at higher temperatures [16], [17]. 

The use of machine learning (ML) to the prediction of the 
efficiency of parabolic trough collectors (PTC) represents a 
paradigm shift in the field of research and application 
pertaining to renewable energy. The use of machine learning 
methods is justified in predictive modeling initiatives 
because these approaches provide benefits that are 
unmatched in their ability to handle the intricate and ever-
changing interactions that are inherent in PTC systems. In 
contrast to more conventional approaches to analysis, ML 
algorithms are particularly effective at processing vast 
amounts of heterogeneous data that include a wide range of 
characteristics, including solar radiation, temperature 
outside, collector orientation, and different fluid properties 
[18], [19], [20], [21]. Through the use of this data, machine 
learning models are able to discover nuanced patterns and 
connections that may be beyond the comprehension of 
human intuition or standard statistical methods. Furthermore, 
machine learning makes it possible to recognize non-linear 
correlations and interactions amongst input variables, which 
improves the accuracy and resilience of forecasting 
algorithms for PTC efficiency [22], [23], [24]. In addition to 
this, machine learning makes continuous learning and 
adaptation possible, which enables models to develop and 
improve over time as new data is made accessible. This 
ongoing refining process guarantees that predictive models 
are relevant and effective in a variety of operating 
circumstances, which eventually results in improved use of 
renewable energy sources and better performance of the 
PTC. In light of this, the incorporation of machine learning 
into the predictive modeling of the efficiency of parabolic 
trough collectors marks a significant step forward in the field 
of renewable energy research. It provides insights and skills 
that are unmatched in their ability to solve the ever-changing 
difficulties and possibilities in the field of producing clean 
energy [25], [26], [27].  

The literature in this domain reveals significant progress 
in experimental work. However, the numerical modeling of 
these systems is challenging. Hence, in this study, an attempt 
is made to make use of modern AI techniques like support 
vector regression (SVR) and decision tree (DT) for model 
prediction of PTC’s efficiency.  The performance of these 
ML-based models will be compared with a baseline 
approach of linear regression (LR).  Innovatively a battery of 
comparing techniques including statistical methods as well 
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as graphical plots in the form of Taylor’s diagram will be 
used for model comparison. 

II. MATERIAL AND METHODS 

A. Test set up and testing procedure 

To determine overall efficiency, the PTSC experimental 
platform was tested with varied nanofluid concentrations 
(0% to 3.0%) and mass flow rates (0.025kg/s to 0.06kg/s). 
Each of the nine concentrations was evaluated at all five 
mass flow rates. Alumina/deionized (DI) water nanofluid 
was held in the HTF tank and cycled through the receiver 
and heat exchanger by a miniature submersible pump. The 
PTSC's performance criteria are described below.  
The PTSC's efficiency is calculated as the ratio of heat 
absorbed by the fluid to solar energy incident on the 
collector aperture, using Equation (1). Additionally, the 
exergy efficiency is determined using Patela's equation [28], 
which is shown in Equation 2. 
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The experimental setting defines various parameters, like 

η denotes energy efficiency and η��  represents exergy 
efficiency. The flow rate of the HTF is denoted by ɱ, 
whereas Cp represents the HTF's specific heat. Ti denotes 
the HTF's entrance temperature, whereas To represents its 
exit temperature. In addition, T̄a represents the ambient 
temperature and TSun symbolizes the Sun's surface 
temperature (5762 K). AC denotes the aperture area, while 
Gb represents the beam solar radiation.  

Throughout the experiment, a variety of environmental 
elements and experimental circumstances are observed and 
documented. An anemometer with an accuracy of ±1 m/s 
measures wind velocity, whereas a solar power meter with 
an accuracy of ±10 W/m2 records sun radiation. In addition, 
the flow rate of the HTF is measured using a rotameter with 
a 1.0% accuracy. Thermocouples are used to measure 
nanofluid, ambient, and surface temperatures at regular 
intervals with an accuracy of ±0.1°C. These parameters are 
routinely collected at preset time intervals to guarantee that 
the experimental data is reliable and consistent. 

B. Machine learning methods 

The ML methods i.e., linear regressions, support vector 
regression, and decision tree were employed in this study. 
Following is a brief description of these methods:  

1)  Linear regression  

Linear regression, often known as LR, is a basic statistical 
procedure that is used for modeling the connection that 
occurs among a dependent factor and a number of 
independent variables. Regarding regression analysis, the 
objective of linear regression (LR) is to build a linear 
connection between the variables that serve as predictors and 
the variable that serves as the target. The LR model assumes 

that this connection is shown by a straight path, which 
enables the prediction of events that are continuous without 
interruption. In order for LR to function, a line is fitted to the 
data points in such a way that it reduces the sum of the 
squared differences amongst the values that were seen and 
those that were anticipated. Due to the fact that it is 
straightforward and easy to understand, LR is a well-liked 
option for regression jobs in which it is anticipated that the 
connection between variables would be linear [29], [30].  

2)  Support Vector Regression  

The Support Vector Regression (SVR) algorithm is a 
modification of the Support Vector Machine (SVM) method 
that has been extended for the purpose of regression 
analysis. In order to minimize the amount of prediction 
errors, the purpose of SVR is to locate the ideal hyperplane 
that provides the greatest fit to the data while simultaneously 
maximizing the margin. Instead of fitting a line that goes 
through as many data points as feasible, SVR focuses on 
generating a function that corresponds to the data within a 
defined margin of tolerance. This is in contrast to standard 
regression approaches, which concentrate on fitting a line 
across as many data points as possible. The support vector 
regression (SVR) algorithm is very helpful for datasets that 
include non-linear patterns, complicated connections, or 
high-dimensional feature spaces. Because it is able to 
capture non-linear correlations between variables via the use 
of kernel functions, SVR is adaptable enough to be used for 
a variety of regression problems [31], [32], [33], [34]. 

3)  Decision Tree Regression 

The non-parametric supervised learning approach known 
as Decision Tree Regression is used for the purpose of 
performing regression problems. On the other hand, decision 
tree regression forecasts continuous target variables, in 
contrast to classification decision trees, which forecast 
discrete class labels. The feature space is partitioned into 
smaller areas using decision trees, which do this by 
recursively dividing the data based on feature thresholds. 
The goal of each split is to reduce the variability of the target 
variable within each zone. At each node, the decision tree 
algorithm chooses the feature and threshold that provides the 
most effective division of the data. This selection is often 
made on the basis of criteria such as reducing the mean 
squared error. The decision tree regression method is 
favorable due to its ease of use, interpretability, and capacity 
to deal with both categorical and numerical data. On the 
other hand, decision trees are susceptible to overfitting, 
particularly when they are formed via the use of deep or 
complicated trees. The accuracy of the DT regression 
framework may be improved by the use of techniques like 
pruning and ensemble approaches such as Random Forest. 
These techniques can help minimize the effects of overfitting 
[35], [36], [37].  

III. RESULTS AND DISCUSSION 

A. Data preprocessing 

A correlation heatmap was created using the data from the 
testing phase, and it was used to estimate the degree of 
correlation between the data columns. Figure 2 illustrates 
this correlation heatmap. It might be of assistance in 
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comprehending the impact that a variety of characteristics 
have on the effectiveness of the system. With a correlation 
value of 0.64 and 0.66, respectively, it is possible to notice 
that both Re numbers and Nusselt numbers have a favorable 
influence on effectiveness. This is something that can be 
observed. In a similar vein, the impacts of additional factors 
may be readily calculated using this method.  

 
Fig. 2  Heatmap for correlation  

 

B. Model development and evaluation 

During the training phase as listed in Figure 3, the 
prediction models that were constructed by employing the 
Linear Regression (LR), Support Vector Regression (SVR), 
and Decision Tree (DT) algorithms were assessed based on a 
number of different performance criteria. Metrics such as the 
coefficient of determination (R), the coefficient of 
determination (R2), the Kling-Gupta Efficiency (KGE), the 
mean squared error (MSE), and the mean absolute error 
(MAE) are included in this category. The accuracy and 
dependability of the prediction models may be shown 
through the use of these indicators, which give useful 
information. For LR, the model was able to attain a R value 
of 0.8680, which indicates that there is a positive linear 
connection between the predictor variables in the target 
variable that is moderately strong. The R2 value of 0.7508 
indicates that the predictor variables are responsible for 
explaining about 75.08% of the variation in the variable that 
is being studied (the target variable). It is possible that LR 
has limits when it comes to capturing the complicated 
nonlinear relationships that are present in the data, despite 
the fact that these values exhibit fair performance. Moreover, 
the mean squared error (MSE) of 0.01154 and the mean 
absolute error (MAE) of 0.0811 represent the average 
squared and absolute disparities, respectively, between the 
values that were observed and those that were predicted.  

In the case of the SVR, the model obtained higher R 
(0.9588) and R2 (0.9078) values in comparison to LR. This 
indicates that the linear relationship between the variables is 
stronger and that the model provides a better explanation of 
the variation in the target variable. The fact that the R2 value 

is greater indicates that the predictor variables are 
responsible for about 90.78 percent of the variation in the 
variable that is being used as the target. In addition, the SVR 
model displayed lower MSE (0.00427) along with MAE 
(0.0519) values in comparison to the LR model, which 
indicates that it has greater prediction accuracy and lesser 
errors.  

Last but not least, the DT model beat both LR and the 
SVR models. It achieved significantly high R values 
(0.9998) and R2 values (0.9996), which indicated an almost 
perfect linear connection and an outstanding explanation of 
variation in the target variable. The DT model is 
characterized by its excellent accuracy and precision, as seen 
by the exceptionally low MSE (0.00001) with MAE (0.0008) 
values. These numbers indicate that there are minimal 
mistakes between the values that were observed and those 
that were predicted.   

The comparative performance of all three models during 
model training is depicted in Figure 3a for LR-based model, 
Figure 3b for SVR-based model, and Figure 3c for DT-based 
model. The graphical representation shows that DT-based 
model was superior to other two models.  

In short, the findings of the evaluation show that the 
Decision Tree model performs better than both the Linear 
Regression model and the Support Vector Regression model 
in terms of the accuracy and precision of its predictions. It 
may be said that the DT model provides an almost perfect 
match to the experimental data, with errors that are nearly 
nonexistent and an exceptional capacity for explanation. 
When it comes to accuracy and precision, the SVR model is 
not as good as the DT model, despite the fact that it also 
performs well. In general, the DT model seems to be the 
most appropriate option for forecasting the efficacy of the 
parabolic trough collector based on the experimental data 
that has been supplied [38], [39].  

TABLE I 
MODEL RESULTS ON DIFFERENT STATISTICAL METRICS 

Model R R2 KGE MSE MAE 

Model training 

LR  0.8680 0.7508 0.7867 0.01154 0.0811 

SVR  0.9588 0.9078 0.8459 0.00427 0.0519 

DT  0.9998 0.9996 0.9982 0.00001 0.0008 

Model testing 

LR 0.8408 0.6507 0.8234 0.0167 0.0833 
A 
SVR 0.9657 0.9267 0.9456 0.0035 0.0413 

DT 0.9959 0.9901 0.9702 0.0005 0.0143 

 
During the model testing phase, the predictions were 

made on a fresh set of data.  LR based model was able to 
acquire a R value of 0.8408, which indicates that there is a 
positive linear connection between the predictor variables 
and the target variable that is reasonably strong throughout 
the testing phase. The R2 value of 0.6507 indicates that the 
predictor variables are responsible for explaining about 
65.07% of the variation in the variable that is being studied 
(the target variable). Despite the fact that LR demonstrates a 
satisfactory level of performance, it may have difficulty 
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capturing the intricate nonlinear connections that are present 
in the data. Mean squared error (MSE) of 0.0167 and mean 
absolute error (MAE) of 0.0833 are the average squared and 
absolute discrepancies, respectively, between the values that 
were observed and those that were predicted.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3  Measured vs model based efficiency for (a) LR (b) SVR (c) DT 
based models 

 
In the case of SVR, the model achieved higher R (0.9657) 

and R2 (0.9267) values compared to LR. This indicates that 

the model has a stronger linear connection and provides a 
better explanation of the variation in the target variable 
during testing. Based on the higher R2 value, it may be 
inferred that the predictor variables are responsible for about 
92.67% of the variation in the variable that is being 
predicted. It should also be noted that the SVR model 
displayed lower MSE (0.0035) and MAE (0.0413) values in 
comparison to the LR model, which indicates that it has 
greater prediction accuracy and lesser error. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4  Measured vs model-based efficiency for (a) LR (b) SVR (c) DT 
based models 

 
The DT model excelled both the LR and the SVR models 

during the testing process. It achieved high R (0.9959) and 
R2 (0.9901) values, which indicates an almost perfect linear 
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connection and an outstanding explanation of variation in the 
target variable. Although the MSE (0.0005) and MAE 
(0.0143) values are exceptionally low, they indicate that 
there are little error between the values that were observed 
and those that were anticipated. This highlights the great 
accuracy and precision of the DT model when it was being 
tested.  

Figures 4a for the LR-based model, 4b for the SVR-based 
model, and 4c for the DT-based model show the comparative 
performance of all three models during testing. The 
graphical depiction demonstrates that the DT-based model 
outperformed the other two models.  

The findings of the assessment in the testing phase reveal, 
that the DT-based model continues to beat both the LR and 
SVR models in terms of the accuracy and precision of its 
predictions. It is clear that the DT model provides an almost 
perfect match to the testing data, with errors that are nearly 
zero and a good correlational value. When it comes to 
accuracy and precision, the SVR model is not as good as the 
DT model, despite the fact that it performs rather well during 
testing. In general, the DT model continues to be the most 
appropriate option for forecasting the performance of the 
parabolic trough collector based on the experimental data 
that was supplied during the testing phase. 

C. Model comparison with Taylor’s diagram 

Taylor's diagram is a helpful tool that can be used to 
compare many models based on their performance across a 
variety of criteria at the same time. The Figure 5a depicts the 
Taylor’s dig ram during model training while Figure 5b 
depicts the same for model testing phase. It can be observed 
that DT-based model was superior to both LR and SVR for 
both during training as well as testing phase [40], [41].  

 

 
(a) 

 

  
(b) 

 
Fig. 5  Taylor’s diagram for PTC efficiency model during (a)training  
(b) testing. 

IV. CONCLUSION 

In conclusion, the comparative study of predictive models 
for the efficiency of the parabolic trough collector that use 
the Linear Regression (LR), Support Vector Regression 
(SVR), and Decision Tree (DT) algorithms shows significant 
insights into the performance of these models. The Decision 
Tree model consistently emerged as the preferred alternative 
across both the training and testing stages, displaying the 
greatest levels of predicted accuracy and precision 
throughout the course of both phases. It differentiates itself 
from both SVR and LR models by virtue of its capacity to 
capture intricate correlations within the data and to reduce 
errors between the values that are predicted and those that 
are observed. In spite of the fact that Support Vector 
Regression demonstrated a performance that was 
substantially superior to that of Linear Regression, it was 
still unable to provide the same level of accuracy and 
precision as the Decision Tree model. The Linear Regression 
model, on the other hand, had the worst performance of the 
three models, which highlights the limits of this model in 
terms of its ability to capture the non-linear correlations that 
are present in the data. In general, the results highlight how 
important it is to pick proper modeling tools in order to 
accurately anticipate the effectiveness of parabolic trough 
collectors because of their relevance. The remarkable 
performance of the Decision Tree model indicates that it has 
the potential to be a useful tool for improving the 
development and execution of solar energy systems, which 
will contribute to the growth of renewable energy 
technology and efforts to promote sustainability. 
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