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Abstract— The biogas has the potential to serve as a substitute as fossil derived fuel. The present study investigates anaerobic co-

digestion of organic waste for predictive modelling. Several co-digestion studies were performed with different pH, solid concentration, 

temperature, and co-digestion ratios. A water displacement apparatus was used to test biogas yield, and data was collected meticulously. 

Linear regression (LR) and Random Forest (RF) based models were built with Python-based tools and tested using statistical measures 

for the prediction of biogas yield. The LR showed a strong linear association, with R and R2 values of 0.9892 and 0.9785, respectively. 

However, RF surpassed LR, with higher R and R2 values of 0.9919 and 0.9826, respectively. Furthermore, RF had lower MSE and 

MAE values, indicating higher prediction accuracy and precision. RF consistently scored well in tests, demonstrating its ability to 

capture complicated relationships while minimizing prediction mistakes. Taylor's diagrams further demonstrated RF's excellent 

performance during both the training and testing periods. Overall, RF emerges as the optimum model for reliably estimating biogas 

output in anaerobic co-digestion systems, with important implications for waste-to-energy processes. 

Keywords— Anaerobic digestion; biogas; alternative fuel; random forest; machine learning. 

Manuscript received 22 Oct. 2023; revised 29 Dec. 2023; accepted 12 Feb. 2024. Date of publication 31 Mar. 2024. 

International Journal on Computational Engineering is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

In response to the rising prices of petroleum products, the 

growing worries about the environment, and the diminishing 

availability of fossil fuels, a significant amount of research 

has been conducted into alternate and sustainable energy 
sources. Consequently, researchers are concentrating their 

efforts on the discovery of alternative energy sources and the 

use of these sources in order to reduce the adverse effects of 

their use [1]. The majority of the recent research that has been 

conducted on renewable energy sources has focused on a 

variety of waste products, including food waste, animal 

manure, organic waste, and municipal solid waste [2], [3]. 

Through the process of transforming these waste products into 

fuel, it is possible to lessen the many adverse impacts that 

these waste materials have on the environment and on living 

species, including people [4].  
The waste products that are accessible include animal 

manure as well as food wastages, both of which comprises a 

considerable quantity of organic matter which is capable of 

being fermented without the presence of oxygen. Anaerobic 

digestion (AD) has been shown to be an effective approach 

for minimizing the amount of organic waste produced while 

simultaneously the recovery of valuable byproducts such as 

digestate and biogas [5]. There is a considerable relationship 

between the kind of waste that is utilized as a feedstock in the 

AD process and the performance of the process. Co-digestion, 

which includes employing a variety of organic waste for 

feedstock, is becoming popular owing to its capacity to boost 

the generation of biogas and methane in comparison to AD 
techniques that only use a single feedstock (mono-digestion). 

The carbon-to-nitrogen (C/N) ratio may be effectively 

balanced by the use of co-digestion, which also helps to 

reduce the inhibitory effects of ammonia and overcome the 

obstacles that are associated with mono-digestion for example 

[6].  

Biogas is one of the several biofuels that are both 

renewable and cost-effective [7], [8]. The main and secondary 

gases make up the majority of its composition. Methane 

accounts for almost concentration of 60%–60% of primary 

gases, whereas carbon dioxide accounts for almost 40%–50% 

of primary gases. For example, hydrogen sulfide, hydrogen, 
vapor of water, and siloxane are examples of trace gases that 

are found in secondary gases, which are found in trace 
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amounts [9]. The majority of industrialized nations have 

improved their technological capabilities and infrastructure, 

which has led to the production of biogas on a massive scale 

from local facilities such as farms, food processing industries 

(FPI), effluent treatment plants (ETP), and other similar 

establishments [10]. The incorporation of such biofuel into 

the gas grid or as fuel for vehicles over an extended period of 

time has the potential to significantly contribute to the 

alleviation of concerns about greenhouse gas emissions 

(GHG), climate change, and the worsening of public health 
standards [11], [12]. Over the course of the last several years, 

the amount of food waste (FW) that is produced by food 

processing industries and residential facilities has reached 1.6 

gigatons of FW annually. Everyday industry is the source of 

the majority of processed FW. On a global scale, the food 

supply chain is responsible for the generation of 160–295 

kg/year/person of food waste [13]. This primarily 

encompasses activities such as production, processing, 

consumption, post-handling, and distribution [1]. The FW is 

characterized by it having a greater saline level, volatile solid, 

and moisture content. The FW that are thrown away are the 
primary contributor to greenhouse gas emissions and a foul 

odor. Because of its straightforward and consistent nature, the 

sources of FW creation in FPI may be simply recognized and 

recycled once they have been generated [1]. 

The process of biogas generation through this process is 

complex and is influenced by several control factors. In these 

circumstances it becomes difficult to model the process 

through conventional numerical methods. The objective has 

been to develop a précised biogas yield prediction model in 

order to conduct an analysis of the working system of 

anaerobic co-digestion. Data-driven modeling that makes use 
of machine learning methods is one method that may be used 

to do this [14]. To facilitate the training process, a priori 

databases are necessary. To validate the models, test data 

comprised of observed test cases is employed. To predict the 

quantity of biogas generated through anaerobic co-digestion 

processes, several models utilizing machine learning 

techniques have been devised. These models can be 

developed using different ML based methods like random 

forests (RF),  fuzzy logic, artificial neural networks (ANN), 

gradient boosting, gene expression programming, and 

extreme gradient boosting (XGBoost). According to the 

findings of Pei et al. [15], the extreme learning machine 
(ELM) model offered the most accurate forecast for the 

production of biogas. The model had a a coefficient of 

determination (R2) as 0.95 and mean absolute error (MAE) of 

0.67. Through the use of the random forest (RF) model, they 

were also able to determine that acetic acid, butyric acid, and 

pH are key parameters that influence the yield of biogas 

production [13]. Also, Karichappan et al. [16] used a 

statistical approach (Box-Behnken) in RSM to conduct an 

analysis cum optimization of biogas production. This analysis 

took into account several factors, like reactor temperature, 

pH, process alkalinity, and feedstock retention metrics. It was 
concluded that variation in pH and temperature had a 

substantial impact on the average amount of biogas produced, 

the cumulative amount of biogas production, and the 

concentration of methane.  

The literature reveals that biogas generation through co-

digestion of organic waste is a complex and non-linear 

process and specially challenging for modelling through 

numerical methods. In this study an ensemble method of ML 

is explored for this purpose. It will be compared with linear 

regression for comparison as baseline process. The data 

collected from testing phase will be utilized for this purpose.   

II. MATERIAL AND METHODS 

A. Anaerobic co-digestion 

The test setup employed in the study comprised of lab-scale 

anaerobic batch reactors. The glass reactor's overall capacity 

was 3 liters, with a useful operational capacity of 2.45 liters. 

The reactors were equipped with a bath of water for 

temperature control and a magnetic stirring device for 

agitation. Co-digestion experiments were carried out at 

different operation setting of: pH, solid concentration (Solid 

Conc.%), temperature (T, °C), and Co-digestion. For the 

measurement of biogas yield a water displacement type 

apparatus was employed. The data was carefully collected for 

subsequent use in prediction modelling.   

B. Machine learning 

Linear Regression (LR) and Random Forest (RF) are two 

common ML methods used for regression applications that 

require predicting continuous data. Let us go down each of 

these strategies in simple words. Assume one have a series of 

data points on a graph that essentially follow a straight line. 

Linear regression is equivalent to drawing the best-fitting line 

between the points. It aids in understanding the link between 

two variables by identifying the line that minimizes the 
distance between the actual data points and the line itself. For 

example, if we want to forecast someone's height based on 

their age, linear regression can tell us how much height grows 

with each year of life.  A typical flow chart for 

implementation of LR is depicted in Figure 1 [17].  

 

Fig. 1   LR Flow chart [17] 

Random Forest: Assume you have a forest with several 

trees, each with its own unique method of forecasting things. 
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Random forest is analogous to having a collection of these 

trees, and when we want to make a forecast, we ask each tree 

for its opinion. Then we integrate all of these views to make a 

final projection [18], [19]. Each tree in the forest is trained on 

a random selection of data and generates its own forecast. 

Random forest excels at managing more complicated 

interactions between variables and may detect nonlinear 

patterns in data [20], [21]. When comparing the two 

approaches, linear regression is more straightforward and 

easier to comprehend. It works best when the connection 
between variables is linear, or can be represented by a straight 

line. However, it may underperform when the connection is 

more complicated or nonlinear. A typical RF flow chart is 

depicted in Figure 2 [22].  

 

 

Fig. 2  Flow chart of RF [22] 

 

Random forest, on the other hand, is more adaptable and 

more suited for complicated interactions. It's like having a 

group of experts (trees) collaborate to get a resolution. 

Random forest is more accurate and resilient, particularly 

when there are several variables or interactions between them. 

To summarize, linear regression is a basic tool that works well 

for simple situations with linear connections, but random 

forest is a sophisticated tool that can handle more complicated 

problems and detect nonlinear patterns in data. Both strategies 
have advantages and disadvantages, and the decision is based 

on the particular situation and data at hand [22], [23]. 

III. RESULT AND DISCUSSION 

The data collected from the anaerobic co-digestion of 

waster organic matter was used for model development. LR 

was used as a baseline ML while ensemble ML technique RF 

was also used to explore this highly efficient ML in this case. 

The data was randomly split in two parts. One larger chunk 
(70%) was employed for model training and remaining was 

employed for model testing.   

A. Data pre-processing 

The data was used for development of correlation heatmap 

and calculating the correlation matrix. The correlation matrix 

is listed as Table 1 while the correlation heatmap is depicted 

in Figure 3.  

The correlation matrix in Table 1 gives useful information 
on the links between the factors involved in anaerobic co-

digestion of organic waste. It was shown that the association 

between biomethane solid concentration (%) and yield (mL) 

is -0.2534. That association suggests that when solid content 

rises, biomethane production falls, and vice versa. Moving on 

to the undisturbed data, we discovered correlations between 

two variables. For example, the correlation coefficient 

between pH and temperature (T) is 0.1459, showing a positive 

relationship between the two variables. Similarly, co-

digestion efficiency (%) and yield (mL) have a high positive 

correlation of 0.945441, showing that as co-digestion 

efficiency grows, so does biogas output.  
Overall, the correlation matrix gives a thorough description 

of the correlations between the factors involved in anaerobic 

co-digestion, allowing researchers to uncover patterns and 

possible insights that may aid in future study and decision-

making processes.  

TABLE I 

CORRELATION MATRIX  

 

Solid 

Conc.% pH T, °C 

Co-dig., 

% 

Yield, 

mL 

Solid 

Conc.% 1 

-8.23E-

17 

-1.21E-

16 

-7.11E-

17 -0.2534 

pH -8.23E-17 1 

0.14599

2 

3.95E-

17 

0.14344

7 

T, °C -1.21E-16 

0.14599

2 1 

-1.31E-

16 -0.0258 

Co-dig., % -7.11E-17 

3.95E-

17 

-1.31E-

16 1 

0.94544

1 

Yield, mL -0.2534 

0.14344

7 -0.0258 

0.94544

1 1 

 

 

Fig. 3  Correlation heatmap  

B. Model development and evaluation 

The models were developed in python based open access 

libraries.  Both LR and RF model were developed and used 

for making predictions. Then these predictions were tested on 

different statistical metrics a listed in table 2. The actual vs 

model predicted biogas yield using LR is plotted in Figure 4a 

for model training phase while it is shown in Figure 4b for RF 
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based model during model training phase. Similarly, for 

model testing phase the Figure 5a depicts for LR and Figure 

5b for RF based models.   

The statistical analysis shown in Table 2 as an exhaustive 

analysis of the LR and RF models that are used for the purpose 

of forecasting the biogas yield. The Pearson correlation 

coefficient (R), the coefficient of determination (R2), the 

Kling-Gupta Efficiency (KGE), the mean squared error 

(MSE), and the mean absolute error (MAE) are the metrics 

that are used for assessment. The LR model acquired a R 
value of 0.9892 and an R2 value of 0.9785, which indicates a 

strong linear connection and a high degree of variance 

explained by the model. These values were obtained in the 

first set of data when the model was applied. The fact that the 

KGE value is 0.9847 is more evidence that the model is 

successful in understanding the variability that has been seen. 

The LR model, on the other hand, had MSE and MAE values 

that were substantially higher than average, coming in at 

43.95 and 5.36, respectively, indicating that there was some 

degree of prediction inaccuracy.  

 
(a) 

 
(b) 

Fig. 4  Model training performance in terms of actual vs predicted in training 

phase for (a) LR (b) RF based biogas yield  

 

On the other hand, the RF model displayed greater 

performance, with a R value of 0.9919 and an R2 value of 

0.9826. These values indicate that the RF model provides a 

stronger explanation for correlation and variance in 

comparison to the LR model. In addition, the RF model 
produced MSE and MAE values that were lower, coming in 

at 35.44 and 4.47, respectively, which indicates that the 

prediction accuracy and precision of the model were 

improved. The second set of findings demonstrates that the 

performance of the LR model deteriorated throughout the 

testing period. This is shown by the fact that the R and R2 

values declined, in addition to the MSE and MAE values 

increasing. The RF model, on the other hand, maintained a 

robust performance, exhibiting continuously high R, R2, and 

KGE values while maintaining MSE and MAE values that 

were relatively low. These data demonstrate that RF is 
superior than LR when it comes to forecasting biogas output, 

especially when it comes to capturing complicated nonlinear 

interactions and reducing the number of mistakes that occur 

during prediction. 

TABLE II 

STATISTICAL EVALUATION OF LR AND RF BASED BIOGAS YIELD PREDICTION 

MODEL 

Phase Model R R2 KGE MSE MAE 

Model 

training 

LR 0.9892 0.9785 0.9847 43.95 5.36 

RF 0.9919 0.9826 0.9551 35.44 4.47 

Model 

testing 

LR 0.924 0.826 0.747 356.1 16.01 

RF 0.9903 0.974 0.907 54.02 6.19 

 
(a) 

 
(b) 

Fig. 4  Model training performance in terms of actual vs predicted in testing 

phase for (a) LR (b) RF based biogas yield  

 

The models were also compared using Taylor’s diagram to 

show case the model performance and also for their 

comparison. The Taylor’s diagram for training as well as 
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testing phase of models is depicted in Figure 5a and Figure 5b 

respectively. It helped in easy identification of RF based 

model as better performing model both in training as well as 

testing phases.   

 

 
(a) 

 
(b) 

Fig. 5  Taylor’s plots for model (a) training (b) testing  

IV. CONCLUSION 

In the present study the data gathered from anaerobic co-

digestion of organic waste matter was employed for the 

prognostic model developments. Co-digestion tests were 

carried out with various pH, solid concentration, temperature, 

and co-digestion ratios. A water displacement device was 

used to assess biogas yield, and thorough data collection was 

performed in preparation for predictive modeling. The LR and 

RF models were built using Python-based open-access 

modules and tested using a variety of statistical criteria. LR 

had a strong linear association with R and R2 values of 0.9892 
and 0.9785, respectively, but RF performed better with higher 

R and R2 values of 0.9919 and 0.9826, respectively. 

Furthermore, RF produced lower MSE and MAE values, 

suggesting higher prediction accuracy and precision than LR. 

RF performed well throughout the testing phase, 

demonstrating its ability to capture complicated nonlinear 

interactions while reducing prediction errors. Taylor's 

illustrations demonstrated RF's better performance 

throughout both the training and testing periods. Overall, RF 

emerges as the most accurate model for predicting biogas 

generation in anaerobic co-digestion systems. 
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